Chào mừng quý vị đến với website của ...

Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tài liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.

Tiết 14-Phân tích đa thức thành nhân tử bằng phương pháp phối hợp nhiều phương pháp

Wait
  • Begin_button
  • Prev_button
  • Play_button
  • Stop_button
  • Next_button
  • End_button
  • 0 / 0
  • Loading_status
Tham khảo cùng nội dung: Bài giảng, Giáo án, E-learning, Bài mẫu, Sách giáo khoa, ...
Nhấn vào đây để tải về
Báo tài liệu có sai sót
Nhắn tin cho tác giả
(Tài liệu chưa được thẩm định)
Nguồn: Đặng Đức Hiệp
Người gửi: Đặng Đức Hiệp (trang riêng)
Ngày gửi: 16h:24' 18-09-2010
Dung lượng: 612.0 KB
Số lượt tải: 194
Số lượt thích: 0 người
BÀI 9:
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
BẰNG CÁCH
PHỐI HỢP NHIỀU PHƯƠNG PHÁP
Ở các tiết học trước, chúng ta đã được học các phương pháp cơ bản để phân tích đa thức thành nhân tử. Đó là phương pháp đặt nhân tử chung, phương pháp dùng hằng đẳng thức và phương pháp nhóm hạng tử.
Mỗi phương pháp trên chỉ thực hiện cho các trường hợp riêng rẽ, độc lập. Trong tiết học hôm nay, chúng ta sẽ tìm hiểu cách phối hợp các phương pháp đó để phân tích các đa thức thành nhân tử.
Ví dụ:


Như vậy, để phân tích đa thức trên thành nhân tử, ta đã phối hợp hai phương pháp:
Đặt nhân tử chung và dùng hằng đẳng thức.

VD1: Phân tích đa thức sau thành nhân tử
A = 5x3 + 10x2y + 5xy2
Giải:

A= 5x3 + 10x2y + 5xy2
= 5x(x2 +2xy + y2)
= 5x(x + y)2


Các bạn có nhận xét gì về các hạng tử của đa thức trên?

VD2 : Phân tích đa thức sau thành nhân tử: B= x3 + 8 – 4x2 – 8x

Giải:
B=(x3+8) – (4x2+8x)
=[(x+2)(x2-2x+4) – 4x(x+2)]
=(x+2)[(x2-2x+4) – 4x]
=(x+2)(x2-6x+4)


Trong bài, ta đã sử dụng những phương pháp nào để phân tích đa thức trên thành nhân tử?

-Nhóm hạng tử
-Dùng hằng đẳng thức
-Đặt nhân tử chung
Ở đa thức trên, ta có thể nhóm hạng tử được hay không?
Tiếp theo ta nên làm như thế nào?
Phân tích đa thức sau thành nhân tử:
2x3y – 2xy3 – 4xy2 – 2xy
Giải:
C= 2x3y – 2xy3 – 4xy2 – 2xy
= 2xy( x2 – y2 - 2y – 1)
= 2xy[ x2 – (y2 + 2y +1)]
= 2xy[ x2 – (y + 1)2]
= 2xy(x – y – 1)(x + y + 1)

?1
a,Tính hợp lí giá trị của biểu thức
A= x2 + 2x + 1 – y2 tại x = 94,5 và y = 4,5.
Giải:
A= x2 + 2x + 1 – y2
= (x2 + 2x + 1) – y2
= (x + 1)2 – y2
= (x + 1 – y)(x + 1 + y)
-Thay x=94,5 và y=4,5. Ta có:
A=(94,5 + 1 – 4,5)(94,5 + 1 + 4,5)
= 91 . 100
= 9100


?2
2. Áp dụng:
BT 51/SGK: Phân tích đa thức sau thành nhân tử:
b, 2x2 + 4x + 2 – 2y2
Giải:
B= 2x2 + 4x + 2 – 2y2
= 2(x2 + 2x + 1 – y2)
= 2[(x2 + 2x + 1) – y2]
= 2[(x + 1)2 – y2]
= 2(x – y + 1)(x + y + 1)

c, 2xy – x2 – y2 + 16
Giải:
C= 2xy – x2 – y2 + 16
= 16 - (x2 – 2xy + y2)
= 42 - (x – y)2
= (y – x + 4)(x – y + 4)
BT 52/SGK: Chứng minh rằng (5n + 2)2 - 4 chia hết cho 5 với mọi số nguyên n.

Bài làm
D= (5n + 2)2 – 4
= (5n + 2)2 – 22
= (5n + 2 – 2)(5n + 2 + 2)
= 5n(5n + 4)
Ta có: 5 chia hết cho 5 nên
D= 5n(5n + 4)=(5n + 2)2 – 4 chia hết cho 5 với mọi n.
Vậy: D= (5n + 2)2 – 4 chia hết cho 5




 
Gửi ý kiến